Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization
نویسندگان
چکیده
We propose an automated method for segmentation of brain tissues in longitudinal MR images. In the proposed method, images acquired at each time point are first separately segmented into white matter, gray matter, and cerebrospinal fluid by bias correction embedded fuzzy c-means. Intensities differences are then defined as similarities of each voxel to the cluster centroids. After being normalized in interclass, the similarities are incorporated into a non-local means de-noising formula to regularize the segmentation in both spatial and temporal dimensions. Non-locally regularization results are used to compute final membership functions for the segmentation. To improve time performance, we accelerate the modified de-noising algorithm using CUDA and obtain a 200 performance improvement. Quantitative comparison with the state-of-the-art methods on BrainWeb dataset demonstrate advantages of the proposed method in terms of segmentation accuracy and the ability to consistently segment brain tissues in an arbitrary number of longitudinal brain MR image series. 2016 Elsevier Inc. All rights reserved.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملGeneralized fuzzy clustering for segmentation of multi-spectral magnetic resonance images
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast ...
متن کاملSpatio-temporal Regularization for Longitudinal Registration to an Unbiased 3D Individual Template
Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Large longitudinal brain imaging datasets are now accessible to investigate these structural changes over time. However, manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional man...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملSpatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template
Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional manner where each time-point is analyzed independently. With such analysis methods, bias, error and longitudinal noise may b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Visual Communication and Image Representation
دوره 38 شماره
صفحات -
تاریخ انتشار 2016